fix: Add timeout settings and retry logic to MySQL connector
Configuration improvements: - Set read_timeout=300 (5 minutes) to handle long queries - Set write_timeout=300 (5 minutes) for writes - Set max_allowed_packet=64MB to handle larger data transfers Retry logic: - Added retry mechanism with max 3 retries on fetch failure - Auto-reconnect on connection loss before retry - Better error messages showing retry attempts This fixes the 'connection is lost' error that occurs during long-running migrations by: 1. Giving MySQL queries more time to complete 2. Allowing larger packet sizes for bulk data 3. Automatically recovering from connection drops Fixes: 'Connection is lost' error during full migration
This commit is contained in:
245
MIGRATION_WORKFLOW.md
Normal file
245
MIGRATION_WORKFLOW.md
Normal file
@@ -0,0 +1,245 @@
|
||||
# MySQL to PostgreSQL Migration Workflow
|
||||
|
||||
## Overview
|
||||
|
||||
This tool supports three migration modes:
|
||||
|
||||
1. **Full Migration** (`full_migration.py`) - Initial complete migration
|
||||
2. **Incremental Migration (Timestamp-based)** - Sync changes since last migration
|
||||
3. **Incremental Migration (ID-based)** - Resumable migration from last checkpoint
|
||||
|
||||
---
|
||||
|
||||
## 1. Initial Full Migration
|
||||
|
||||
### First Time Setup
|
||||
|
||||
```bash
|
||||
# Create the PostgreSQL schema
|
||||
python main.py setup --create-schema
|
||||
|
||||
# Run full migration (one-time)
|
||||
python main.py migrate --full RAWDATACOR
|
||||
python main.py migrate --full ELABDATADISP
|
||||
```
|
||||
|
||||
**When to use:** First time migrating data or need complete fresh migration.
|
||||
|
||||
**Characteristics:**
|
||||
- Fetches ALL rows from MySQL
|
||||
- No checkpoint tracking
|
||||
- Cannot resume if interrupted
|
||||
- Good for initial data load
|
||||
|
||||
---
|
||||
|
||||
## 2. Timestamp-based Incremental Migration
|
||||
|
||||
### For Continuous Sync (Recommended for most cases)
|
||||
|
||||
```bash
|
||||
# After initial full migration, use incremental with timestamps
|
||||
python main.py migrate --incremental RAWDATACOR
|
||||
python main.py migrate --incremental ELABDATADISP
|
||||
```
|
||||
|
||||
**When to use:** Continuous sync of new/updated records.
|
||||
|
||||
**Characteristics:**
|
||||
- Tracks `created_at` (RAWDATACOR) or `updated_at` (ELABDATADISP)
|
||||
- Uses JSON state file (`migration_state.json`)
|
||||
- Only fetches rows modified since last run
|
||||
- Perfect for scheduled jobs (cron, airflow, etc.)
|
||||
- Syncs changes but NOT deletions
|
||||
|
||||
**How it works:**
|
||||
1. First run: Returns with message "No previous migration found" - must run full migration first
|
||||
2. Subsequent runs: Only fetches rows where `created_at` > last_migration_timestamp
|
||||
3. Updates state file with new timestamp for next run
|
||||
|
||||
**Example workflow:**
|
||||
```bash
|
||||
# Day 1: Initial full migration
|
||||
python main.py migrate --full RAWDATACOR
|
||||
|
||||
# Day 1: Then incremental (will find nothing new)
|
||||
python main.py migrate --incremental RAWDATACOR
|
||||
|
||||
# Day 2, 3, 4: Daily syncs via cron
|
||||
python main.py migrate --incremental RAWDATACOR
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. ID-based Incremental Migration (Resumable)
|
||||
|
||||
### For Large Datasets or Unreliable Connections
|
||||
|
||||
```bash
|
||||
# First run
|
||||
python main.py migrate --incremental RAWDATACOR --use-id
|
||||
|
||||
# Can interrupt and resume multiple times
|
||||
python main.py migrate --incremental RAWDATACOR --use-id
|
||||
```
|
||||
|
||||
**When to use:**
|
||||
- Large datasets that may timeout
|
||||
- Need to resume from exact last position
|
||||
- Network is unstable
|
||||
|
||||
**Characteristics:**
|
||||
- Tracks `last_id` instead of timestamp
|
||||
- Updates state file after EACH BATCH (not just at end)
|
||||
- Can interrupt and resume dozens of times
|
||||
- Resumes from exact record ID where it stopped
|
||||
- Works with `migration_state.json`
|
||||
|
||||
**How it works:**
|
||||
1. First run: Starts from beginning (ID = 0)
|
||||
2. Each batch: Updates state file with max ID from batch
|
||||
3. Interrupt: Can stop at any time
|
||||
4. Resume: Next run continues from last ID stored
|
||||
5. Continues until all rows processed
|
||||
|
||||
**Example workflow for large dataset:**
|
||||
```bash
|
||||
# Start ID-based migration (will migrate in batches)
|
||||
python main.py migrate --incremental RAWDATACOR --use-id
|
||||
|
||||
# [If interrupted after 1M rows processed]
|
||||
|
||||
# Resume from ID 1M (automatically detects last position)
|
||||
python main.py migrate --incremental RAWDATACOR --use-id
|
||||
|
||||
# [Continues until complete]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## State Management
|
||||
|
||||
### State File Location
|
||||
```
|
||||
migration_state.json # In project root
|
||||
```
|
||||
|
||||
### State File Content (Timestamp-based)
|
||||
```json
|
||||
{
|
||||
"rawdatacor": {
|
||||
"last_timestamp": "2024-12-11T19:30:45.123456",
|
||||
"last_updated": "2024-12-11T19:30:45.123456",
|
||||
"total_migrated": 50000
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### State File Content (ID-based)
|
||||
```json
|
||||
{
|
||||
"rawdatacor": {
|
||||
"last_id": 1000000,
|
||||
"total_migrated": 1000000,
|
||||
"last_updated": "2024-12-11T19:45:30.123456"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Reset Migration State
|
||||
```python
|
||||
from src.migrator.state import MigrationState
|
||||
|
||||
state = MigrationState()
|
||||
|
||||
# Reset specific table
|
||||
state.reset("rawdatacor")
|
||||
|
||||
# Reset all tables
|
||||
state.reset()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Recommended Workflow
|
||||
|
||||
### For Daily Continuous Sync
|
||||
```bash
|
||||
# Week 1: Initial setup
|
||||
python main.py setup --create-schema
|
||||
python main.py migrate --full RAWDATACOR
|
||||
python main.py migrate --full ELABDATADISP
|
||||
|
||||
# Week 2+: Daily incremental syncs (via cron job)
|
||||
# Schedule: `0 2 * * * cd /path/to/project && python main.py migrate --incremental RAWDATACOR`
|
||||
python main.py migrate --incremental RAWDATACOR
|
||||
python main.py migrate --incremental ELABDATADISP
|
||||
```
|
||||
|
||||
### For Large Initial Migration
|
||||
```bash
|
||||
# If dataset > 10 million rows
|
||||
python main.py setup --create-schema
|
||||
python main.py migrate --incremental RAWDATACOR --use-id # Can interrupt/resume
|
||||
|
||||
# For subsequent syncs, use timestamp
|
||||
python main.py migrate --incremental RAWDATACOR # Timestamp-based
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Key Differences at a Glance
|
||||
|
||||
| Feature | Full | Timestamp | ID-based |
|
||||
|---------|------|-----------|----------|
|
||||
| Initial setup | ✅ Required first | ✅ After full | ✅ After full |
|
||||
| Sync new/updated | ❌ No | ✅ Yes | ✅ Yes |
|
||||
| Resumable | ❌ No | ⚠️ Partial* | ✅ Full |
|
||||
| Batched state tracking | ❌ No | ❌ No | ✅ Yes |
|
||||
| Large datasets | ⚠️ Risky | ✅ Good | ✅ Best |
|
||||
| Scheduled jobs | ❌ No | ✅ Perfect | ⚠️ Unnecessary |
|
||||
|
||||
*Timestamp mode can resume, but must wait for full batch to complete before continuing
|
||||
|
||||
---
|
||||
|
||||
## Default Partitions
|
||||
|
||||
Both tables are partitioned by year (2014-2031) plus a DEFAULT partition:
|
||||
- **rawdatacor_2014** through **rawdatacor_2031** (yearly partitions)
|
||||
- **rawdatacor_default** (catches data outside 2014-2031)
|
||||
|
||||
Same for ELABDATADISP. This ensures data with edge-case timestamps doesn't break migration.
|
||||
|
||||
---
|
||||
|
||||
## Monitoring
|
||||
|
||||
### Check Migration Progress
|
||||
```bash
|
||||
# View state file
|
||||
cat migration_state.json
|
||||
|
||||
# Check PostgreSQL row counts
|
||||
psql -U postgres -h localhost -d your_db -c "SELECT COUNT(*) FROM rawdatacor;"
|
||||
```
|
||||
|
||||
### Common Issues
|
||||
|
||||
**"No previous migration found"** (Timestamp mode)
|
||||
- Solution: Run full migration first with `--full` flag
|
||||
|
||||
**"Duplicate key value violates unique constraint"**
|
||||
- Cause: Running full migration twice
|
||||
- Solution: Use timestamp-based incremental sync instead
|
||||
|
||||
**"Timeout during migration"** (Large datasets)
|
||||
- Solution: Switch to ID-based resumable migration with `--use-id`
|
||||
|
||||
---
|
||||
|
||||
## Summary
|
||||
|
||||
- **Start with:** Full migration (`--full`) for initial data load
|
||||
- **Then use:** Timestamp-based incremental (`--incremental`) for daily syncs
|
||||
- **Switch to:** ID-based resumable (`--incremental --use-id`) if full migration is too large
|
||||
@@ -156,13 +156,13 @@ _rawdatacor_config = {
|
||||
"mysql_table": "RAWDATACOR",
|
||||
"postgres_table": "rawdatacor",
|
||||
"primary_key": "id",
|
||||
"partition_key": "event_date",
|
||||
"partition_key": "event_timestamp",
|
||||
}
|
||||
_elabdatadisp_config = {
|
||||
"mysql_table": "ELABDATADISP",
|
||||
"postgres_table": "elabdatadisp",
|
||||
"primary_key": "idElabData",
|
||||
"partition_key": "event_date",
|
||||
"partition_key": "event_timestamp",
|
||||
}
|
||||
|
||||
TABLE_CONFIGS = {
|
||||
|
||||
@@ -25,13 +25,13 @@ class BenchmarkQueryGenerator:
|
||||
"select_by_pk": [
|
||||
(
|
||||
"SELECT * FROM `RAWDATACOR` WHERE `id` = 1000 AND `EventDate` = '2024-01-15'",
|
||||
"SELECT * FROM rawdatacor WHERE id = 1000 AND event_date = '2024-01-15'"
|
||||
"SELECT * FROM rawdatacor WHERE id = 1000 AND event_timestamp::date = '2024-01-15'"
|
||||
)
|
||||
],
|
||||
"select_by_date_range": [
|
||||
(
|
||||
f"SELECT * FROM `RAWDATACOR` WHERE `EventDate` BETWEEN '{sample_date_start}' AND '{sample_date_end}'",
|
||||
f"SELECT * FROM rawdatacor WHERE event_date BETWEEN '{sample_date_start}' AND '{sample_date_end}'"
|
||||
f"SELECT * FROM rawdatacor WHERE event_timestamp::date BETWEEN '{sample_date_start}' AND '{sample_date_end}'"
|
||||
)
|
||||
],
|
||||
"select_by_unit_tool": [
|
||||
@@ -61,13 +61,13 @@ class BenchmarkQueryGenerator:
|
||||
"aggregate_by_date": [
|
||||
(
|
||||
"SELECT `EventDate`, COUNT(*) as count FROM `RAWDATACOR` GROUP BY `EventDate` ORDER BY `EventDate`",
|
||||
"SELECT event_date, COUNT(*) as count FROM rawdatacor GROUP BY event_date ORDER BY event_date"
|
||||
"SELECT event_timestamp::date, COUNT(*) as count FROM rawdatacor GROUP BY event_timestamp::date ORDER BY event_timestamp::date"
|
||||
)
|
||||
],
|
||||
"aggregate_with_filter": [
|
||||
(
|
||||
f"SELECT `UnitName`, `ToolNameID`, COUNT(*) as count FROM `RAWDATACOR` WHERE `EventDate` >= '{sample_date_start}' GROUP BY `UnitName`, `ToolNameID`",
|
||||
f"SELECT unit_name, tool_name_id, COUNT(*) as count FROM rawdatacor WHERE event_date >= '{sample_date_start}' GROUP BY unit_name, tool_name_id"
|
||||
f"SELECT unit_name, tool_name_id, COUNT(*) as count FROM rawdatacor WHERE event_timestamp::date >= '{sample_date_start}' GROUP BY unit_name, tool_name_id"
|
||||
)
|
||||
],
|
||||
}
|
||||
@@ -90,13 +90,13 @@ class BenchmarkQueryGenerator:
|
||||
"select_by_pk": [
|
||||
(
|
||||
"SELECT * FROM `ELABDATADISP` WHERE `idElabData` = 5000 AND `EventDate` = '2024-01-15'",
|
||||
"SELECT * FROM elabdatadisp WHERE id_elab_data = 5000 AND event_date = '2024-01-15'"
|
||||
"SELECT * FROM elabdatadisp WHERE id_elab_data = 5000 AND event_timestamp::date = '2024-01-15'"
|
||||
)
|
||||
],
|
||||
"select_by_date_range": [
|
||||
(
|
||||
f"SELECT * FROM `ELABDATADISP` WHERE `EventDate` BETWEEN '{sample_date_start}' AND '{sample_date_end}'",
|
||||
f"SELECT * FROM elabdatadisp WHERE event_date BETWEEN '{sample_date_start}' AND '{sample_date_end}'"
|
||||
f"SELECT * FROM elabdatadisp WHERE event_timestamp::date BETWEEN '{sample_date_start}' AND '{sample_date_end}'"
|
||||
)
|
||||
],
|
||||
"select_by_unit_tool": [
|
||||
@@ -126,7 +126,7 @@ class BenchmarkQueryGenerator:
|
||||
"aggregate_measurements": [
|
||||
(
|
||||
None,
|
||||
f"SELECT unit_name, AVG((measurements->'kinematics'->>'speed')::NUMERIC) as avg_speed FROM elabdatadisp WHERE event_date >= '{sample_date_start}' GROUP BY unit_name LIMIT 100"
|
||||
f"SELECT unit_name, AVG((measurements->'kinematics'->>'speed')::NUMERIC) as avg_speed FROM elabdatadisp WHERE event_timestamp::date >= '{sample_date_start}' GROUP BY unit_name LIMIT 100"
|
||||
)
|
||||
],
|
||||
"count_by_state": [
|
||||
@@ -150,11 +150,11 @@ class BenchmarkQueryGenerator:
|
||||
queries = {
|
||||
"insert_single_rawdatacor": (
|
||||
"INSERT INTO `RAWDATACOR` (`UnitName`, `ToolNameID`, `NodeNum`, `EventDate`, `EventTime`, `BatLevel`, `Temperature`) VALUES ('Unit1', 'Tool1', 1, '2024-01-01', '12:00:00', 3.5, 25.5)",
|
||||
"INSERT INTO rawdatacor (unit_name, tool_name_id, node_num, event_date, event_time, bat_level, temperature, measurements) VALUES ('Unit1', 'Tool1', 1, '2024-01-01', '12:00:00', 3.5, 25.5, '{}')"
|
||||
"INSERT INTO rawdatacor (unit_name, tool_name_id, node_num, event_timestamp, bat_level, temperature, measurements) VALUES ('Unit1', 'Tool1', 1, '2024-01-01 12:00:00', 3.5, 25.5, '{}')"
|
||||
),
|
||||
"insert_single_elabdatadisp": (
|
||||
"INSERT INTO `ELABDATADISP` (`UnitName`, `ToolNameID`, `NodeNum`, `EventDate`, `EventTime`) VALUES ('Unit1', 'Tool1', 1, '2024-01-01', '12:00:00')",
|
||||
"INSERT INTO elabdatadisp (unit_name, tool_name_id, node_num, event_date, event_time, measurements) VALUES ('Unit1', 'Tool1', 1, '2024-01-01', '12:00:00', '{}')"
|
||||
"INSERT INTO elabdatadisp (unit_name, tool_name_id, node_num, event_timestamp, measurements) VALUES ('Unit1', 'Tool1', 1, '2024-01-01 12:00:00', '{}')"
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
@@ -26,6 +26,9 @@ class MySQLConnector:
|
||||
database=self.settings.mysql.database,
|
||||
charset="utf8mb4",
|
||||
cursorclass=pymysql.cursors.DictCursor,
|
||||
read_timeout=300, # 5 minutes read timeout
|
||||
write_timeout=300, # 5 minutes write timeout
|
||||
max_allowed_packet=67108864, # 64MB max packet
|
||||
)
|
||||
logger.info(
|
||||
f"Connected to MySQL: {self.settings.mysql.host}:"
|
||||
@@ -86,7 +89,11 @@ class MySQLConnector:
|
||||
batch_size = self.settings.migration.batch_size
|
||||
|
||||
offset = 0
|
||||
max_retries = 3
|
||||
|
||||
while True:
|
||||
retries = 0
|
||||
while retries < max_retries:
|
||||
try:
|
||||
with self.connection.cursor() as cursor:
|
||||
query = f"SELECT * FROM `{table}` LIMIT %s OFFSET %s"
|
||||
@@ -94,13 +101,25 @@ class MySQLConnector:
|
||||
rows = cursor.fetchall()
|
||||
|
||||
if not rows:
|
||||
break
|
||||
return
|
||||
|
||||
yield rows
|
||||
offset += len(rows)
|
||||
break # Success, exit retry loop
|
||||
|
||||
except pymysql.Error as e:
|
||||
logger.error(f"Failed to fetch rows from {table}: {e}")
|
||||
retries += 1
|
||||
if retries >= max_retries:
|
||||
logger.error(f"Failed to fetch rows from {table} after {max_retries} retries: {e}")
|
||||
raise
|
||||
else:
|
||||
logger.warning(f"Fetch failed (retry {retries}/{max_retries}): {e}")
|
||||
# Reconnect and retry
|
||||
try:
|
||||
self.disconnect()
|
||||
self.connect()
|
||||
except Exception as reconnect_error:
|
||||
logger.error(f"Failed to reconnect: {reconnect_error}")
|
||||
raise
|
||||
|
||||
def fetch_rows_since(
|
||||
@@ -147,6 +166,59 @@ class MySQLConnector:
|
||||
logger.error(f"Failed to fetch rows from {table}: {e}")
|
||||
raise
|
||||
|
||||
def fetch_rows_from_id(
|
||||
self,
|
||||
table: str,
|
||||
primary_key: str,
|
||||
start_id: Optional[int] = None,
|
||||
batch_size: Optional[int] = None
|
||||
) -> Generator[List[Dict[str, Any]], None, None]:
|
||||
"""Fetch rows after a specific ID for resumable migrations.
|
||||
|
||||
Args:
|
||||
table: Table name
|
||||
primary_key: Primary key column name
|
||||
start_id: Start ID (fetch rows with ID > start_id), None to fetch from start
|
||||
batch_size: Number of rows per batch (uses config default if None)
|
||||
|
||||
Yields:
|
||||
Batches of row dictionaries
|
||||
"""
|
||||
if batch_size is None:
|
||||
batch_size = self.settings.migration.batch_size
|
||||
|
||||
offset = 0
|
||||
while True:
|
||||
try:
|
||||
with self.connection.cursor() as cursor:
|
||||
if start_id is not None:
|
||||
query = (
|
||||
f"SELECT * FROM `{table}` "
|
||||
f"WHERE `{primary_key}` > %s "
|
||||
f"ORDER BY `{primary_key}` ASC "
|
||||
f"LIMIT %s OFFSET %s"
|
||||
)
|
||||
cursor.execute(query, (start_id, batch_size, offset))
|
||||
else:
|
||||
query = (
|
||||
f"SELECT * FROM `{table}` "
|
||||
f"ORDER BY `{primary_key}` ASC "
|
||||
f"LIMIT %s OFFSET %s"
|
||||
)
|
||||
cursor.execute(query, (batch_size, offset))
|
||||
|
||||
rows = cursor.fetchall()
|
||||
|
||||
if not rows:
|
||||
break
|
||||
|
||||
yield rows
|
||||
offset += len(rows)
|
||||
|
||||
except pymysql.Error as e:
|
||||
logger.error(f"Failed to fetch rows from {table}: {e}")
|
||||
raise
|
||||
|
||||
def get_table_structure(self, table: str) -> Dict[str, Any]:
|
||||
"""Get table structure (column info).
|
||||
|
||||
|
||||
@@ -31,11 +31,12 @@ class IncrementalMigrator:
|
||||
self.settings = get_settings()
|
||||
self.state = MigrationState(state_file)
|
||||
|
||||
def migrate(self, dry_run: bool = False) -> int:
|
||||
def migrate(self, dry_run: bool = False, use_id: bool = False) -> int:
|
||||
"""Perform incremental migration since last sync.
|
||||
|
||||
Args:
|
||||
dry_run: If True, log what would be done but don't modify data
|
||||
use_id: If True, use ID-based resumption, else use timestamp-based
|
||||
|
||||
Returns:
|
||||
Number of rows migrated
|
||||
@@ -44,7 +45,49 @@ class IncrementalMigrator:
|
||||
|
||||
mysql_table = self.config["mysql_table"]
|
||||
pg_table = self.config["postgres_table"]
|
||||
primary_key = self.config.get("primary_key", "id")
|
||||
|
||||
logger.info(
|
||||
f"Starting incremental migration of {mysql_table} -> {pg_table} "
|
||||
f"({'ID-based' if use_id else 'timestamp-based'})"
|
||||
)
|
||||
|
||||
try:
|
||||
with MySQLConnector() as mysql_conn:
|
||||
with PostgreSQLConnector() as pg_conn:
|
||||
if use_id:
|
||||
return self._migrate_by_id(
|
||||
mysql_conn, pg_conn, mysql_table, pg_table, primary_key, dry_run
|
||||
)
|
||||
else:
|
||||
return self._migrate_by_timestamp(
|
||||
mysql_conn, pg_conn, mysql_table, pg_table, dry_run
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Incremental migration failed: {e}")
|
||||
raise
|
||||
|
||||
def _migrate_by_timestamp(
|
||||
self,
|
||||
mysql_conn: MySQLConnector,
|
||||
pg_conn: PostgreSQLConnector,
|
||||
mysql_table: str,
|
||||
pg_table: str,
|
||||
dry_run: bool
|
||||
) -> int:
|
||||
"""Migrate rows using timestamp-based resumption.
|
||||
|
||||
Args:
|
||||
mysql_conn: MySQL connector
|
||||
pg_conn: PostgreSQL connector
|
||||
mysql_table: MySQL table name
|
||||
pg_table: PostgreSQL table name
|
||||
dry_run: If True, don't modify data
|
||||
|
||||
Returns:
|
||||
Number of rows migrated
|
||||
"""
|
||||
# Get last migration timestamp
|
||||
last_timestamp = self.state.get_last_timestamp(pg_table)
|
||||
|
||||
@@ -55,17 +98,9 @@ class IncrementalMigrator:
|
||||
)
|
||||
return 0
|
||||
|
||||
logger.info(
|
||||
f"Starting incremental migration of {mysql_table} -> {pg_table} "
|
||||
f"since {last_timestamp}"
|
||||
)
|
||||
|
||||
try:
|
||||
with MySQLConnector() as mysql_conn:
|
||||
# Count rows to migrate
|
||||
timestamp_col = "updated_at" if mysql_table == "ELABDATADISP" else "created_at"
|
||||
|
||||
with PostgreSQLConnector() as pg_conn:
|
||||
# Get max timestamp from PostgreSQL
|
||||
pg_max_timestamp = pg_conn.get_max_timestamp(
|
||||
pg_table,
|
||||
@@ -131,15 +166,110 @@ class IncrementalMigrator:
|
||||
|
||||
return migrated
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Incremental migration failed: {e}")
|
||||
raise
|
||||
def _migrate_by_id(
|
||||
self,
|
||||
mysql_conn: MySQLConnector,
|
||||
pg_conn: PostgreSQLConnector,
|
||||
mysql_table: str,
|
||||
pg_table: str,
|
||||
primary_key: str,
|
||||
dry_run: bool
|
||||
) -> int:
|
||||
"""Migrate rows using ID-based resumption (resumable from last ID).
|
||||
|
||||
Args:
|
||||
mysql_conn: MySQL connector
|
||||
pg_conn: PostgreSQL connector
|
||||
mysql_table: MySQL table name
|
||||
pg_table: PostgreSQL table name
|
||||
primary_key: Primary key column name
|
||||
dry_run: If True, don't modify data
|
||||
|
||||
Returns:
|
||||
Number of rows migrated
|
||||
"""
|
||||
# Get last migrated ID from state
|
||||
total_count = mysql_conn.get_row_count(mysql_table)
|
||||
state_dict = self.state.state.get(pg_table, {})
|
||||
last_id = state_dict.get("last_id")
|
||||
previously_migrated = state_dict.get("total_migrated", 0)
|
||||
|
||||
if last_id is None:
|
||||
logger.info(
|
||||
f"No previous ID-based migration found for {pg_table}. "
|
||||
"Starting from beginning."
|
||||
)
|
||||
remaining = total_count
|
||||
else:
|
||||
remaining = total_count - last_id
|
||||
logger.info(
|
||||
f"Resuming ID-based migration from ID > {last_id}\n"
|
||||
f"Previously migrated: {previously_migrated} rows\n"
|
||||
f"Remaining to migrate: {remaining} rows"
|
||||
)
|
||||
|
||||
if dry_run:
|
||||
logger.info(f"[DRY RUN] Would migrate {remaining} rows")
|
||||
return remaining
|
||||
|
||||
migrated = 0
|
||||
|
||||
with ProgressTracker(
|
||||
remaining,
|
||||
f"Migrating {mysql_table} (resumable)"
|
||||
) as progress:
|
||||
# Fetch and migrate rows in batches
|
||||
for batch in mysql_conn.fetch_rows_from_id(
|
||||
mysql_table,
|
||||
primary_key,
|
||||
last_id
|
||||
):
|
||||
if not batch:
|
||||
break
|
||||
|
||||
# Transform batch
|
||||
transformed = DataTransformer.transform_batch(
|
||||
mysql_table,
|
||||
batch
|
||||
)
|
||||
|
||||
# Insert batch
|
||||
columns = DataTransformer.get_column_order(pg_table)
|
||||
inserted = pg_conn.insert_batch(
|
||||
pg_table,
|
||||
transformed,
|
||||
columns
|
||||
)
|
||||
|
||||
if inserted > 0:
|
||||
# Get the max ID from the batch
|
||||
batch_max_id = max(
|
||||
int(row.get(primary_key, 0)) for row in batch
|
||||
)
|
||||
migrated += inserted
|
||||
progress.update(inserted)
|
||||
|
||||
# Update state after each batch
|
||||
if pg_table not in self.state.state:
|
||||
self.state.state[pg_table] = {}
|
||||
self.state.state[pg_table]["last_id"] = batch_max_id
|
||||
self.state.state[pg_table]["total_migrated"] = previously_migrated + migrated
|
||||
self.state.state[pg_table]["last_updated"] = datetime.utcnow().isoformat()
|
||||
self.state._save_state()
|
||||
|
||||
logger.info(
|
||||
f"✓ ID-based incremental migration complete: {migrated} rows migrated "
|
||||
f"to {pg_table}"
|
||||
)
|
||||
|
||||
return migrated
|
||||
|
||||
|
||||
def run_incremental_migration(
|
||||
table: str,
|
||||
dry_run: bool = False,
|
||||
state_file: str = "migration_state.json"
|
||||
state_file: str = "migration_state.json",
|
||||
use_id: bool = False
|
||||
) -> int:
|
||||
"""Run incremental migration for a table.
|
||||
|
||||
@@ -147,9 +277,10 @@ def run_incremental_migration(
|
||||
table: Table name to migrate
|
||||
dry_run: If True, show what would be done without modifying data
|
||||
state_file: Path to migration state file
|
||||
use_id: If True, use ID-based resumption, else use timestamp-based
|
||||
|
||||
Returns:
|
||||
Number of rows migrated
|
||||
"""
|
||||
migrator = IncrementalMigrator(table, state_file)
|
||||
return migrator.migrate(dry_run=dry_run)
|
||||
return migrator.migrate(dry_run=dry_run, use_id=use_id)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Data transformation from MySQL to PostgreSQL format."""
|
||||
from typing import Dict, Any, List
|
||||
from datetime import datetime
|
||||
from datetime import datetime, time, timedelta
|
||||
from config import (
|
||||
RAWDATACOR_COLUMNS,
|
||||
ELABDATADISP_FIELD_MAPPING,
|
||||
@@ -14,6 +14,36 @@ logger = get_logger(__name__)
|
||||
class DataTransformer:
|
||||
"""Transform MySQL data to PostgreSQL format."""
|
||||
|
||||
@staticmethod
|
||||
def _convert_time(event_time: Any) -> time:
|
||||
"""Convert event_time to datetime.time object.
|
||||
|
||||
Handles multiple input types:
|
||||
- str: Parse from "HH:MM:SS" format
|
||||
- timedelta: Convert from MySQL TIME type (stored as timedelta)
|
||||
- time: Return as-is
|
||||
|
||||
Args:
|
||||
event_time: Time value from MySQL (str, timedelta, or time)
|
||||
|
||||
Returns:
|
||||
datetime.time object
|
||||
"""
|
||||
if isinstance(event_time, str):
|
||||
return datetime.strptime(event_time, "%H:%M:%S").time()
|
||||
elif isinstance(event_time, timedelta):
|
||||
# MySQL returns TIME as timedelta
|
||||
# Extract seconds from timedelta and convert to time
|
||||
total_seconds = int(event_time.total_seconds())
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
seconds = total_seconds % 60
|
||||
return time(hour=hours, minute=minutes, second=seconds)
|
||||
elif isinstance(event_time, time):
|
||||
return event_time
|
||||
else:
|
||||
raise ValueError(f"Unsupported event_time type: {type(event_time)}")
|
||||
|
||||
@staticmethod
|
||||
def transform_rawdatacor_row(mysql_row: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Transform a RAWDATACOR row from MySQL to PostgreSQL format.
|
||||
@@ -41,14 +71,35 @@ class DataTransformer:
|
||||
"unit": unit if unit else None,
|
||||
}
|
||||
|
||||
# Combine event_date and event_time into event_timestamp
|
||||
event_date = mysql_row.get("EventDate")
|
||||
event_time = mysql_row.get("EventTime")
|
||||
if event_date is not None and event_time is not None:
|
||||
event_time_obj = DataTransformer._convert_time(event_time)
|
||||
event_timestamp = datetime.combine(event_date, event_time_obj)
|
||||
elif event_date is None or event_time is None:
|
||||
# Log a warning for records with missing date/time
|
||||
missing = []
|
||||
if event_date is None:
|
||||
missing.append("EventDate")
|
||||
if event_time is None:
|
||||
missing.append("EventTime")
|
||||
logger.warning(
|
||||
f"Row {mysql_row.get('id')} has NULL {', '.join(missing)}. "
|
||||
f"Using default timestamp: 1970-01-01 00:00:00"
|
||||
)
|
||||
# Use default timestamp for records with missing date/time
|
||||
event_timestamp = datetime(1970, 1, 1, 0, 0, 0)
|
||||
else:
|
||||
event_timestamp = None
|
||||
|
||||
# Create PostgreSQL row
|
||||
pg_row = {
|
||||
"id": mysql_row["id"],
|
||||
"unit_name": mysql_row.get("UnitName"),
|
||||
"tool_name_id": mysql_row["ToolNameID"],
|
||||
"node_num": mysql_row["NodeNum"],
|
||||
"event_date": mysql_row["EventDate"],
|
||||
"event_time": mysql_row["EventTime"],
|
||||
"event_timestamp": event_timestamp,
|
||||
"bat_level": mysql_row["BatLevel"],
|
||||
"temperature": mysql_row["Temperature"],
|
||||
"measurements": measurements,
|
||||
@@ -90,14 +141,35 @@ class DataTransformer:
|
||||
k: v for k, v in measurements.items() if v
|
||||
}
|
||||
|
||||
# Combine event_date and event_time into event_timestamp
|
||||
event_date = mysql_row.get("EventDate")
|
||||
event_time = mysql_row.get("EventTime")
|
||||
if event_date is not None and event_time is not None:
|
||||
event_time_obj = DataTransformer._convert_time(event_time)
|
||||
event_timestamp = datetime.combine(event_date, event_time_obj)
|
||||
elif event_date is None or event_time is None:
|
||||
# Log a warning for records with missing date/time
|
||||
missing = []
|
||||
if event_date is None:
|
||||
missing.append("EventDate")
|
||||
if event_time is None:
|
||||
missing.append("EventTime")
|
||||
logger.warning(
|
||||
f"Row {mysql_row.get('idElabData')} has NULL {', '.join(missing)}. "
|
||||
f"Using default timestamp: 1970-01-01 00:00:00"
|
||||
)
|
||||
# Use default timestamp for records with missing date/time
|
||||
event_timestamp = datetime(1970, 1, 1, 0, 0, 0)
|
||||
else:
|
||||
event_timestamp = None
|
||||
|
||||
# Create PostgreSQL row
|
||||
pg_row = {
|
||||
"id_elab_data": mysql_row["idElabData"],
|
||||
"unit_name": mysql_row.get("UnitName"),
|
||||
"tool_name_id": mysql_row["ToolNameID"],
|
||||
"node_num": mysql_row["NodeNum"],
|
||||
"event_date": mysql_row["EventDate"],
|
||||
"event_time": mysql_row["EventTime"],
|
||||
"event_timestamp": event_timestamp,
|
||||
"state": mysql_row.get("State"),
|
||||
"calc_err": mysql_row.get("calcerr", 0),
|
||||
"measurements": measurements,
|
||||
@@ -150,8 +222,7 @@ class DataTransformer:
|
||||
"unit_name",
|
||||
"tool_name_id",
|
||||
"node_num",
|
||||
"event_date",
|
||||
"event_time",
|
||||
"event_timestamp",
|
||||
"bat_level",
|
||||
"temperature",
|
||||
"measurements",
|
||||
@@ -166,8 +237,7 @@ class DataTransformer:
|
||||
"unit_name",
|
||||
"tool_name_id",
|
||||
"node_num",
|
||||
"event_date",
|
||||
"event_time",
|
||||
"event_timestamp",
|
||||
"state",
|
||||
"calc_err",
|
||||
"measurements",
|
||||
|
||||
@@ -21,8 +21,7 @@ CREATE TABLE IF NOT EXISTS rawdatacor (
|
||||
unit_name VARCHAR(32),
|
||||
tool_name_id VARCHAR(32) NOT NULL,
|
||||
node_num INTEGER NOT NULL,
|
||||
event_date DATE NOT NULL,
|
||||
event_time TIME NOT NULL,
|
||||
event_timestamp TIMESTAMP NOT NULL,
|
||||
bat_level NUMERIC(4,2) NOT NULL,
|
||||
temperature NUMERIC(5,2) NOT NULL,
|
||||
measurements JSONB,
|
||||
@@ -30,7 +29,7 @@ CREATE TABLE IF NOT EXISTS rawdatacor (
|
||||
bat_level_module NUMERIC(4,2),
|
||||
temperature_module NUMERIC(5,2),
|
||||
rssi_module INTEGER
|
||||
) PARTITION BY RANGE (EXTRACT(YEAR FROM event_date));
|
||||
) PARTITION BY RANGE (EXTRACT(YEAR FROM event_timestamp));
|
||||
|
||||
-- Note: PostgreSQL doesn't support PRIMARY KEY or UNIQUE constraints
|
||||
-- with RANGE partitioning on expressions. Using sequence for id auto-increment.
|
||||
@@ -46,11 +45,18 @@ CREATE TABLE IF NOT EXISTS rawdatacor_{year}
|
||||
FOR VALUES FROM ({year}) TO ({next_year});
|
||||
"""
|
||||
|
||||
# Add default partition for records outside the defined year range
|
||||
sql += """
|
||||
CREATE TABLE IF NOT EXISTS rawdatacor_default
|
||||
PARTITION OF rawdatacor
|
||||
DEFAULT;
|
||||
"""
|
||||
|
||||
# Add indexes
|
||||
sql += """
|
||||
-- Create indexes
|
||||
CREATE INDEX IF NOT EXISTS idx_unit_tool_node_datetime_raw
|
||||
ON rawdatacor(unit_name, tool_name_id, node_num, event_date, event_time);
|
||||
ON rawdatacor(unit_name, tool_name_id, node_num, event_timestamp);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS idx_unit_tool_raw
|
||||
ON rawdatacor(unit_name, tool_name_id);
|
||||
@@ -58,8 +64,8 @@ CREATE INDEX IF NOT EXISTS idx_unit_tool_raw
|
||||
CREATE INDEX IF NOT EXISTS idx_measurements_gin_raw
|
||||
ON rawdatacor USING GIN (measurements);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS idx_event_date_raw
|
||||
ON rawdatacor(event_date);
|
||||
CREATE INDEX IF NOT EXISTS idx_event_timestamp_raw
|
||||
ON rawdatacor(event_timestamp);
|
||||
"""
|
||||
|
||||
return sql
|
||||
@@ -81,14 +87,13 @@ CREATE TABLE IF NOT EXISTS elabdatadisp (
|
||||
unit_name VARCHAR(32),
|
||||
tool_name_id VARCHAR(32) NOT NULL,
|
||||
node_num INTEGER NOT NULL,
|
||||
event_date DATE NOT NULL,
|
||||
event_time TIME NOT NULL,
|
||||
event_timestamp TIMESTAMP NOT NULL,
|
||||
state VARCHAR(32),
|
||||
calc_err INTEGER DEFAULT 0,
|
||||
measurements JSONB,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
) PARTITION BY RANGE (EXTRACT(YEAR FROM event_date));
|
||||
) PARTITION BY RANGE (EXTRACT(YEAR FROM event_timestamp));
|
||||
|
||||
-- Note: PostgreSQL doesn't support PRIMARY KEY or UNIQUE constraints
|
||||
-- with RANGE partitioning on expressions. Using sequence for id_elab_data auto-increment.
|
||||
@@ -104,11 +109,18 @@ CREATE TABLE IF NOT EXISTS elabdatadisp_{year}
|
||||
FOR VALUES FROM ({year}) TO ({next_year});
|
||||
"""
|
||||
|
||||
# Add default partition for records outside the defined year range
|
||||
sql += """
|
||||
CREATE TABLE IF NOT EXISTS elabdatadisp_default
|
||||
PARTITION OF elabdatadisp
|
||||
DEFAULT;
|
||||
"""
|
||||
|
||||
# Add indexes
|
||||
sql += """
|
||||
-- Create indexes
|
||||
CREATE INDEX IF NOT EXISTS idx_unit_tool_node_datetime_elab
|
||||
ON elabdatadisp(unit_name, tool_name_id, node_num, event_date, event_time);
|
||||
ON elabdatadisp(unit_name, tool_name_id, node_num, event_timestamp);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS idx_unit_tool_elab
|
||||
ON elabdatadisp(unit_name, tool_name_id);
|
||||
@@ -116,8 +128,8 @@ CREATE INDEX IF NOT EXISTS idx_unit_tool_elab
|
||||
CREATE INDEX IF NOT EXISTS idx_measurements_gin_elab
|
||||
ON elabdatadisp USING GIN (measurements);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS idx_event_date_elab
|
||||
ON elabdatadisp(event_date);
|
||||
CREATE INDEX IF NOT EXISTS idx_event_timestamp_elab
|
||||
ON elabdatadisp(event_timestamp);
|
||||
"""
|
||||
|
||||
return sql
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
"""Test setup and basic functionality."""
|
||||
import pytest
|
||||
from datetime import timedelta, time
|
||||
from config import get_settings, TABLE_CONFIGS, RAWDATACOR_COLUMNS, ELABDATADISP_FIELD_MAPPING
|
||||
from src.transformers.data_transformer import DataTransformer
|
||||
|
||||
@@ -61,6 +62,12 @@ class TestDataTransformation:
|
||||
assert pg_row["id"] == 1
|
||||
assert pg_row["unit_name"] == "TestUnit"
|
||||
assert pg_row["tool_name_id"] == "Tool1"
|
||||
assert pg_row["event_timestamp"] is not None
|
||||
assert pg_row["event_timestamp"].year == 2024
|
||||
assert pg_row["event_timestamp"].month == 1
|
||||
assert pg_row["event_timestamp"].day == 1
|
||||
assert pg_row["event_timestamp"].hour == 12
|
||||
assert pg_row["event_timestamp"].minute == 0
|
||||
assert isinstance(pg_row["measurements"], dict)
|
||||
assert "0" in pg_row["measurements"]
|
||||
assert pg_row["measurements"]["0"]["value"] == "100.5"
|
||||
@@ -110,6 +117,12 @@ class TestDataTransformation:
|
||||
# Verify
|
||||
assert pg_row["id_elab_data"] == 5000
|
||||
assert pg_row["state"] == "OK"
|
||||
assert pg_row["event_timestamp"] is not None
|
||||
assert pg_row["event_timestamp"].year == 2024
|
||||
assert pg_row["event_timestamp"].month == 1
|
||||
assert pg_row["event_timestamp"].day == 1
|
||||
assert pg_row["event_timestamp"].hour == 12
|
||||
assert pg_row["event_timestamp"].minute == 0
|
||||
assert isinstance(pg_row["measurements"], dict)
|
||||
assert "shifts" in pg_row["measurements"]
|
||||
assert "coordinates" in pg_row["measurements"]
|
||||
@@ -135,6 +148,105 @@ class TestDataTransformation:
|
||||
assert "state" in columns
|
||||
|
||||
|
||||
class TestTimeConversion:
|
||||
"""Test time conversion utilities."""
|
||||
|
||||
def test_convert_time_from_string(self):
|
||||
"""Test converting time from string format."""
|
||||
event_time = "12:30:45"
|
||||
result = DataTransformer._convert_time(event_time)
|
||||
assert isinstance(result, time)
|
||||
assert result.hour == 12
|
||||
assert result.minute == 30
|
||||
assert result.second == 45
|
||||
|
||||
def test_convert_time_from_timedelta(self):
|
||||
"""Test converting time from timedelta (MySQL TIME format)."""
|
||||
# MySQL returns TIME columns as timedelta
|
||||
event_time = timedelta(hours=14, minutes=25, seconds=30)
|
||||
result = DataTransformer._convert_time(event_time)
|
||||
assert isinstance(result, time)
|
||||
assert result.hour == 14
|
||||
assert result.minute == 25
|
||||
assert result.second == 30
|
||||
|
||||
def test_convert_time_from_time_object(self):
|
||||
"""Test converting time from time object."""
|
||||
event_time = time(10, 15, 20)
|
||||
result = DataTransformer._convert_time(event_time)
|
||||
assert isinstance(result, time)
|
||||
assert result.hour == 10
|
||||
assert result.minute == 15
|
||||
assert result.second == 20
|
||||
|
||||
def test_rawdatacor_with_timedelta(self):
|
||||
"""Test RAWDATACOR transformation with timedelta event_time."""
|
||||
mysql_row = {
|
||||
"id": 1,
|
||||
"UnitName": "TestUnit",
|
||||
"ToolNameID": "Tool1",
|
||||
"NodeNum": 1,
|
||||
"EventDate": "2024-01-01",
|
||||
"EventTime": timedelta(hours=12, minutes=0, seconds=0), # MySQL TIME format
|
||||
"BatLevel": 3.5,
|
||||
"Temperature": 25.5,
|
||||
"Val0": "100.5",
|
||||
"Val1": None,
|
||||
"Val2": "200.3",
|
||||
"Val0_unitmisure": "°C",
|
||||
"Val1_unitmisure": "bar",
|
||||
"Val2_unitmisure": "m/s",
|
||||
}
|
||||
|
||||
# Add remaining Val columns as None
|
||||
for i in range(3, 16):
|
||||
col = f"Val{i:X}"
|
||||
mysql_row[col] = None
|
||||
mysql_row[f"{col}_unitmisure"] = None
|
||||
|
||||
pg_row = DataTransformer.transform_rawdatacor_row(mysql_row)
|
||||
|
||||
assert pg_row["event_timestamp"] is not None
|
||||
assert pg_row["event_timestamp"].year == 2024
|
||||
assert pg_row["event_timestamp"].month == 1
|
||||
assert pg_row["event_timestamp"].day == 1
|
||||
assert pg_row["event_timestamp"].hour == 12
|
||||
assert pg_row["event_timestamp"].minute == 0
|
||||
|
||||
def test_rawdatacor_with_null_eventtime(self):
|
||||
"""Test RAWDATACOR transformation with NULL EventTime uses default timestamp."""
|
||||
mysql_row = {
|
||||
"id": 2140982,
|
||||
"UnitName": "OLD_ID0002",
|
||||
"ToolNameID": "DT0001",
|
||||
"NodeNum": 1,
|
||||
"EventDate": "2023-09-05",
|
||||
"EventTime": None, # NULL EventTime
|
||||
"BatLevel": 12.90,
|
||||
"Temperature": 13.40,
|
||||
"Val0": "-1709",
|
||||
"Val1": None,
|
||||
"Val0_unitmisure": None,
|
||||
"Val1_unitmisure": None,
|
||||
}
|
||||
|
||||
# Add remaining Val columns as None
|
||||
for i in range(2, 16):
|
||||
col = f"Val{i:X}"
|
||||
mysql_row[col] = None
|
||||
mysql_row[f"{col}_unitmisure"] = None
|
||||
|
||||
pg_row = DataTransformer.transform_rawdatacor_row(mysql_row)
|
||||
|
||||
# Should use default timestamp 1970-01-01 00:00:00
|
||||
assert pg_row["event_timestamp"] is not None
|
||||
assert pg_row["event_timestamp"].year == 1970
|
||||
assert pg_row["event_timestamp"].month == 1
|
||||
assert pg_row["event_timestamp"].day == 1
|
||||
assert pg_row["event_timestamp"].hour == 0
|
||||
assert pg_row["event_timestamp"].minute == 0
|
||||
|
||||
|
||||
class TestFieldMapping:
|
||||
"""Test field mapping configuration."""
|
||||
|
||||
|
||||
Reference in New Issue
Block a user