elab matlab
This commit is contained in:
@@ -29,3 +29,10 @@ class Config:
|
||||
self.dbrawdata = c.get("tables", "rawTableName")
|
||||
self.dbrawdata = c.get("tables", "rawTableName")
|
||||
self.dbnodes = c.get("tables", "nodesTableName")
|
||||
|
||||
# Matlab
|
||||
self.matlab_runtime = c.get("matlab", "runtime")
|
||||
self.matlab_func_path = c.get("matlab", "func_path")
|
||||
self.matlab_timeout = c.getint("matlab", "timeout")
|
||||
self.matlab_error = c.get("matlab", "error")
|
||||
self.matlab_error_path = c.get("matlab", "error_path")
|
||||
@@ -9,6 +9,16 @@ from itertools import islice
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
async def get_data(cfg: object, id: int, pool) -> tuple:
|
||||
"""
|
||||
Retrieves unit name, tool name, and tool data for a given record ID from the database.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object containing database table name.
|
||||
id (int): The ID of the record to retrieve.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
tuple: A tuple containing unit_name, tool_name, and tool_data.
|
||||
"""
|
||||
async with pool.acquire() as conn:
|
||||
async with conn.cursor() as cur:
|
||||
await cur.execute(f'select unit_name, tool_name, tool_data from {cfg.dbrectable} where id = {id}')
|
||||
@@ -17,6 +27,16 @@ async def get_data(cfg: object, id: int, pool) -> tuple:
|
||||
return unit_name, tool_name, tool_data
|
||||
|
||||
async def make_pipe_sep_matrix(cfg: object, id: int, pool) -> list:
|
||||
"""
|
||||
Processes pipe-separated data from a CSV record into a structured matrix.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
list: A list of lists, where each inner list represents a row in the matrix.
|
||||
"""
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
righe = ToolData.splitlines()
|
||||
matrice_valori = []
|
||||
@@ -39,6 +59,16 @@ async def make_pipe_sep_matrix(cfg: object, id: int, pool) -> list:
|
||||
return matrice_valori
|
||||
|
||||
async def make_ain_din_matrix(cfg: object, id: int, pool) -> list:
|
||||
"""
|
||||
Processes analog and digital input data from a CSV record into a structured matrix.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
list: A list of lists, where each inner list represents a row in the matrix.
|
||||
"""
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
node_channels, node_types, node_ains, node_dins = get_nodes_type(cfg, ToolNameID, UnitName)
|
||||
righe = ToolData.splitlines()
|
||||
@@ -63,6 +93,16 @@ async def make_ain_din_matrix(cfg: object, id: int, pool) -> list:
|
||||
return matrice_valori
|
||||
|
||||
async def make_channels_matrix(cfg: object, id: int, pool) -> list:
|
||||
"""
|
||||
Processes channel-based data from a CSV record into a structured matrix.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
list: A list of lists, where each inner list represents a row in the matrix.
|
||||
"""
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
node_channels, node_types, node_ains, node_dins = get_nodes_type(cfg, ToolNameID, UnitName)
|
||||
righe = ToolData.splitlines()
|
||||
@@ -81,6 +121,16 @@ async def make_channels_matrix(cfg: object, id: int, pool) -> list:
|
||||
return matrice_valori
|
||||
|
||||
async def make_musa_matrix(cfg: object, id: int, pool) -> list:
|
||||
"""
|
||||
Processes 'Musa' specific data from a CSV record into a structured matrix.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
list: A list of lists, where each inner list represents a row in the matrix.
|
||||
"""
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
node_channels, node_types, node_ains, node_dins = get_nodes_type(cfg, ToolNameID, UnitName)
|
||||
righe = ToolData.splitlines()
|
||||
@@ -104,6 +154,16 @@ async def make_musa_matrix(cfg: object, id: int, pool) -> list:
|
||||
|
||||
|
||||
async def make_tlp_matrix(cfg: object, id: int, pool) -> list:
|
||||
"""
|
||||
Processes 'TLP' specific data from a CSV record into a structured matrix.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
list: A list of lists, where each inner list represents a row in the matrix.
|
||||
"""
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
righe = ToolData.splitlines()
|
||||
valori_x_nodo = 2
|
||||
@@ -121,6 +181,16 @@ async def make_tlp_matrix(cfg: object, id: int, pool) -> list:
|
||||
|
||||
|
||||
async def make_gd_matrix(cfg: object, id: int, pool) -> list:
|
||||
"""
|
||||
Processes 'GD' specific data from a CSV record into a structured matrix.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record.
|
||||
pool: The database connection pool.
|
||||
Returns:
|
||||
list: A list of lists, where each inner list represents a row in the matrix.
|
||||
"""
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
righe = ToolData.splitlines()
|
||||
matrice_valori = []
|
||||
|
||||
@@ -7,6 +7,15 @@ import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
async def main_loader(cfg: object, id: int, pool, action: str) -> None:
|
||||
"""
|
||||
Main loader function to process CSV data based on the specified action.
|
||||
|
||||
Args:
|
||||
cfg (object): Configuration object.
|
||||
id (int): The ID of the CSV record to process.
|
||||
pool: The database connection pool.
|
||||
action (str): The type of data processing to perform (e.g., "pipe_separator", "analogic_digital").
|
||||
"""
|
||||
type_matrix_mapping = {
|
||||
"pipe_separator": make_pipe_sep_matrix,
|
||||
"analogic_digital": make_ain_din_matrix,
|
||||
@@ -27,3 +36,39 @@ async def main_loader(cfg: object, id: int, pool, action: str) -> None:
|
||||
await unlock(cfg, id, pool)
|
||||
else:
|
||||
logger.warning(f"Action '{action}' non riconosciuta.")
|
||||
|
||||
|
||||
async def get_next_csv_atomic(pool, table_name, status):
|
||||
"""Preleva atomicamente il prossimo CSV da elaborare"""
|
||||
async with pool.acquire() as conn:
|
||||
# IMPORTANTE: Disabilita autocommit per questa transazione
|
||||
await conn.begin()
|
||||
|
||||
try:
|
||||
async with conn.cursor() as cur:
|
||||
# Usa SELECT FOR UPDATE per lock atomico
|
||||
await cur.execute(f"""
|
||||
SELECT id, unit_type, tool_type, unit_name, tool_name
|
||||
FROM {table_name}
|
||||
WHERE locked = 0 AND status = %s
|
||||
ORDER BY id
|
||||
LIMIT 1
|
||||
FOR UPDATE SKIP LOCKED
|
||||
""", (status,))
|
||||
|
||||
result = await cur.fetchone()
|
||||
if result:
|
||||
await cur.execute(f"""
|
||||
UPDATE {table_name}
|
||||
SET locked = 1
|
||||
WHERE id = %s
|
||||
""", (result[0],))
|
||||
|
||||
# Commit esplicito per rilasciare il lock
|
||||
await conn.commit()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
# Rollback in caso di errore
|
||||
await conn.rollback()
|
||||
raise e
|
||||
27
utils/database/matlab_query.py
Normal file
27
utils/database/matlab_query.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from utils.database.connection import connetti_db
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def get_matlab_command(cfg: object, tool: str, unit: str) -> tuple:
|
||||
|
||||
with connetti_db(cfg) as conn:
|
||||
cur = conn.cursor(dictionary=True)
|
||||
query = f"""
|
||||
SELECT m.matcall, t.ftp_send , t.unit_id, s.`desc` as statustools, t.api_send, u.inoltro_api, u.inoltro_api_url, u.inoltro_api_bearer_token, IFNULL(u.duedate, "") as duedate from matfuncs as m
|
||||
INNER JOIN tools as t on t.matfunc = m.id
|
||||
INNER JOIN units as u on u.id = t.unit_id
|
||||
INNER JOIN statustools as s on t.statustool_id = s.id
|
||||
where t.name = '{tool}' AND u.name = '{unit}';
|
||||
|
||||
"""
|
||||
cur.execute(query)
|
||||
result = cur.fetchone()
|
||||
cur.close()
|
||||
conn.close()
|
||||
|
||||
if not result:
|
||||
logger.error(f"{unit} - {tool}: Matlab command not found.")
|
||||
return None
|
||||
else:
|
||||
return result
|
||||
@@ -1,2 +1,35 @@
|
||||
import subprocess
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
from utils.database.loader_action import DATA_LOADED, update_status, unlock
|
||||
from utils.csv.data_preparation import get_data
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
async def main_loader(cfg: object, id: int, pool) -> None:
|
||||
pass
|
||||
|
||||
UnitName, ToolNameID, ToolData = await get_data(cfg, id, pool)
|
||||
# Creare un file temporaneo
|
||||
with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as temp_file:
|
||||
temp_file.write(ToolData)
|
||||
temp_filename = temp_file.name
|
||||
|
||||
try:
|
||||
# Eseguire il programma con il file temporaneo
|
||||
result = await subprocess.run(['python3', 'old_script/TS_PiniScript.py', temp_filename], capture_output=True, text=True)
|
||||
print(result.stdout)
|
||||
print(result.stderr)
|
||||
finally:
|
||||
# Pulire il file temporaneo
|
||||
os.unlink(temp_filename)
|
||||
|
||||
if result.returncode != 0:
|
||||
logger.error(f"Errore nell'esecuzione del programma TS_PiniScript.py: {result.stderr}")
|
||||
raise Exception(f"Errore nel programma: {result.stderr}")
|
||||
else:
|
||||
logger.info(f"Programma TS_PiniScript.py eseguito con successo: {result.stdout}")
|
||||
await update_status(cfg, id, DATA_LOADED, pool)
|
||||
await unlock(cfg, id, pool)
|
||||
Reference in New Issue
Block a user